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1. Introduction

Since the expectations involved in stochastic programming problems are often im-
possible to express analytically, various approximation methods are used for their
evaluation, one of which being the sample average approximation (Monte Carlo
estimation) whose advantages are an easy computability and a convergence rate
independent of the dimension of the ”chance” (see e.g. [3, 7]). Moreover, various
methods reducing the variance of Monte Carlo estimates exist (see [6]) suggesting
themselves to be used for the approximation of stochastic programs, too (see e.g.
[8]).

In the present paper, we consider a variant of stratified sampling which is a
widely used variance reduction technique consisting in sampling from conditional
distributions given sub-regions (strata) of the distribution’s support. The specific
of our variant is that we draw exactly one observation from each stratum and that
the strata are equiprobable. Together with a multi-dimensional version of the in-
verse transform, which we formulate, our approach provides a simple and easily
tractable tool to compute expectations (note that, generally, it is not easy to sample
from regions of multidimensional distributions). We call our approach unit stratified
sampling (USS).

∗This research was supported by the Czech Science foundation under Grants 402/09/0965,
P402/10/0956 and P402/11/0150.
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As to our knowledge, unit stratified sampling was first suggested by an early
paper [1] by Dupač who proved that the error of the USS approximation of an
expectation with respect to a k-dimensional uniform random vector is O(−(1

2
+ 1

2k
)).

In the present paper, we generalize the original method for non-uniform distributions
with possibly unbounded support. For easy computation, we formulate a multi-
dimensional version of the inverse transform allowing to use uniform random number
generators when computing the estimates. We prove that the convergence rate of an
approximation error of a Lipschitz function’s expectation is O(−(1

2
+ 1−a

k
)) where a is

a distribution-specific constant taking value 0 for the uniform distribution. Finally,
we show that the error of an approximation of a stochastic program with a Lipschitz
objective function inherits this convergence rate up to an arbitrary small addition.

2. Unit stratified sampling - one-dimensional case

Throughout all the present Section, let X be a random variable with a continuous
cumulative distribution function (c.d.f.) F and a finite second moment. Let g be
a Lipschitz function with the Lipschitz constant K. We compute the unit stratified
sampling (USS) estimator of Eg(X) as follows:

1. We partition the support of X into n unbroken regions R1, R2, . . . , Rn such
that

P[X ∈ Ri] = 1/n, 1 ≤ i ≤ n.

2. We draw n random observations, the i-th one being drawn from the conditional
distribution of X given that [X ∈ Ri]

3. We map all the observations by g

4. We average the results.

Equivalently, the USS estimate may be expressed as

cn(g) =
1

n

n
∑

i=1

g(Xi), Xi = F−1(Ui) (1)

where U1 ∼ U(0, 1
n
), U2 ∼ U( 1

n
, 2
n
), . . . , Un ∼ U(n−1

n
, 1) are independent (U(a, b)

stands for the uniform distribution on [a, b]) and where

F−1(•) = inf{e ∈ R : F (e) ≥ •}

denotes the quantile function of F .

Proposition 1. cn(g) is an unbiased estimate of Eg(X) with

var cn(g) ≤ K2(varX − varYn) = K2(E(X2 − Y 2
n )) (2)

where Yn is a random variable independent of X1, X2, . . . , Xn such that

P[Yn = E(Xi)] =
1

n
, 1 ≤ i ≤ n.

The equality is attainable.
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Proof. According to [5], p. 238 (see also Proposition 6 in the present text) the
distribution of X will not change if X = F−1(U) where U ∼ U(0, 1) hence

Ecn(g) =
1

n

n
∑

i=1

Eg(F−1(Ui)) =
1

n

n
∑

i=1

∫ i/n

(i−1)/n

g(F−1(u))ndu

=

∫ 1

0

g(F−1(u))du = Eg(F−1(U)) = Eg(X).

Further, by a textbook formula,

var cn(g) =
1

n

∑

varg(Xi).

Now, consider a variable

Z =

n
∑

i=1

I{EXi}(Yn)Xi

where I is the indicator function. An easy calculation shows that Z equals to X in
distribution and, by the Law of total variance ([13], p. 385),

var(Z) = Evar(Z|Yn) + var(E(Z|Yn)) =
1

n

n
∑

i=1

var(Xi) + var(Yn). (3)

Now, since
var g(Xi) ≤ K2varXi

(see Lemma 4) with the equality for g(x) = Kx, we have

var cn(g) ≤ K2 1

n

n
∑

i=1

var(Xi)

which, in combination with (3), proves the ”≤” in (2). The ”=” of (2) follows from
the fact that EY = EX . ✷

Remark 2. Since, evidently, Yn → X in distribution and since the second moment of
X is finite, it follows from (2) that var cn(g) → 0 which implies (e.g., by Chebyshev
inequality) consistency of the USS estimator.

Remark 3. Once the USS estimator is defined by (1), Proposition 1 holds even for
discontinuous F .

3. Multidimensional case

Let X be a k-dimensional random vector with a general, possibly discontinuous,
distribution such that the second moments of all its marginal distributions are finite.
Let g : Rk → R is l1-K-Lipschitz,1 i.e.

|g(x)− g(y)| ≤ K
k

∑

i=1

|xi − yi|, x,y ∈ R
k.

1We work with the l1 norm for technical reasons. A reader wanting to work with the other
norms can use the fact that all the norms are equivalent in finite dimensional space.
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Lemma 4 (bound of variance of l1-K-Lipschitz functions).

sup
g is l1-K-Lipschitz

var g(X) ≤ V
2

V
2
= K2

k
∑

i1=1

k
∑

i2=1

√
vi1,i1vi2,i2

where (vi1,i2)i1=1...k,i2=1...k is the variance matrix of X.

Proof. Let g be l1-K-Lipschitz. Then

var(g(X)) = E(g(X)− Eg(X))2 = E(g(X)− g(EX))2 − E(g(EX)− Eg(X))2

≤ E(g(X)− g(EX))2 ≤ E(K
k

∑

i=1

|X i − EX i|)2

= K2
k

∑

i1=1

k
∑

i2=1

E|X i1 − EX i2 ||Xi2 − EX i2 | ≤ K2
k

∑

i1=1

k
∑

i2=1

√

varX i1varX i2 = V
2

(we have used the Schwarz inequality at the last ≤). ✷

Remark 5. It follows from the the Lemma and the Schwarz inequality that Eg(X)
exists and is finite.

3.1. Inverse transform

The next Proposition generalizes the well known random number generation tech-
nique called inverse-transform (see [6]) to multiple dimensions. Even though this
extension is straightforwared, the author is not aware of its publication in such a
general form allowing multi-dimensional, possibly discontinuous, distribution func-
tions.

Proposition 6 (multi-dimensional inverse transform). Let U be a k-dimensional
random vector with the uniform distribution on [0, 1]× [0, 1]× · · · × [0, 1] and let Y
be a k-dimensional real random vector. Denote G1(•) the c.d.f. of Y 1 and, for each
i = 2, 3, . . . , k, denote Gi(•|Y 1,Y 2, . . . ,Y i−1) the conditional c.d.f. of Y i given
(Y 1,Y 2, . . . ,Y i−1). Define

tY :
k
∏

i=1

[0, 1] → R
k,

t1
Y
(u) = G−1

1 (u1),

ti
Y
(u) = G−1

i (ui|t1
Y
(u), t2

Y
(u), . . . , ti−1

Y
(u)), i = 2, 3, . . . , k.

Then tY is measurable with respect to the Borel σ-algebra on the k-dimensional unit
cube and

tY (U)
d
= Y (4)

where
d
= denotes the equality in distribution.

For the proof, the following Lemma will be needed:
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Lemma 7. Let G be a one-dimensional c.d.f. Then G−1(α) ≤ x if and only if
G(x) ≥ α.

Proof (Lemma 7). If G(x) ≥ α then it must be G−1(α) = inf{e : G(e) ≥ α} ≤ x. If,
on the other hand, G−1(α) = inf{e : G(e) ≥ α} ≤ x then, for each xν > x, xν → x,
it has to hold that G(xν) ≥ α (otherwise G−1(α) > x) so G(x) = limν G(xν) ≥ α by
a limit transition. ✷

Proof (Proposition 6). AsRk is a complete separable metric space, L(Y i|Y 1, . . . ,Y i−1)
exists according to [12], VI.1.21., hence the definition of tY (U) is correct.

Further, we proceed by induction: From Lemma 7,

(

t1
Y

)−1
((−∞, x]) = {u : u ≤ G1(x)} = [0, G1(x)]

for each x ∈ R and, from the one dimensional inverse transform (see [5], p. 238),

t1
Y
(U 1)

d
= Y 1,

i.e. t1
Y
is measurable and (4) holds for k = 1.

Induction step: Let k > 1. Assume that vector mapping (t1
Y
, t2

Y
, . . . , tk−1

Y
)′ is mea-

surable with respect to Borel σ-algebra of k − 1-dimensional unit cube (hence with
respect to Borel σ-algebra of k-dimensional unit cube) and that

(t1
Y
(U 1), t2

Y
(U 1,U 2), . . . , tk−1

Y
(U 1, . . . ,U k−1))

d
= (Y 1, . . . ,Y k−1). (5)

Ad. the measurability. It suffices to show that (tk
Y
)−1((−∞, t]) is Borel set. Denote

ūν = (u1,u2, . . . ,uν).

It holds that

(tk
Y
)−1((−∞, t]) = {u : tk

Y
(u) ≤ t} = {u : G−1

k (uk|t1
Y
(ū1), . . . , tk−1

Y
(ūk−1)) ≤ t}

Lemma 7
= {u : Gk(t|t1Y (ū1), . . . , tk−1

Y
(ūk−1)) ≥ uk}

= {u : Gk(t|t1Y (ū1), . . . , tk−1
Y

(ūk−1))− uk ≥ 0}. (6)

Since Gk(t|•) is the conditional probability of Borel set (−∞, t], it is measurable
according to [12], VI.1.1. Therefore and due to the facts that (t1, . . . , tk−1) is mea-
surable by induction hypothesis, that the superposition of two measurable mappings
is measurable, that the identity is measurable and that the sum of two measurable
functions is measurable, the function defining the set (6) is measurable so the set is
Borel.

Ad. (4). Denote Q = L(tY (U)), R = L(Y ),

t̄Y (u1, u2, . . . , uk−1) := (t1
Y
(u1), . . . , t

k−1
Y

(u1, . . . , uk−1))
′,

Q̄ = L(t̄Y ) and R̄ = L(Y 1,Y 2, . . . ,Y k−1). According to the induction assumption,
R̄ = Q̄. To get R = Q it suffices to show that Q[C] = R[C] for each C = A×(−∞, b)
where A ⊆ R

k−1 is Borel set and b ∈ R.
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Denote Hi the i-dimensional unit cube. Gradually we get

Q[C] =

∫

C

dQ(τ ) =

∫

Rk

IC(τ )dQ(τ )

=

∫

Hk

IC(tY (u1, u2, . . . , uk))du1du2 . . . duk

=

∫

Hk

I(−∞,b)(t
k
Y
(u1, u2, . . . , uk))IA(t̄Y (u1, u2, . . . , uk−1))du1du2 . . . duk

=

∫

Hk−1

[∫

[0,1]

I(−∞,b)(t
k
Y
(u1, u2, . . . , uk))duk

]

·IA(t̄Y (u1, u2, . . . , uk−1))du1du2 . . . duk−1

=

∫

Hk−1

[
∫

[0,1]

I(−∞,b)(G
−1
k (uk|t̄Y (u1, u2, . . . , uk−1)))duk

]

·IA(t̄Y (u1, u2, . . . , uk−1))du1du2 . . . duk−1

Q̄ = R̄
=

∫

Rk−1

[
∫

[0,1]

I(−∞,b)(G
−1
k (uk|t1, t2, . . . , tk−1))duk

]

·IA(t1, t2, . . . , tk−1)dR̄(t1, t2, . . . tk−1)

=

∫

A

[
∫

[0,1]

I(−∞,b)(G
−1
k (uk|t1, t2, . . . , tk−1))duk

]

dR̄(t1, t2, . . . , tk−1)

inv. trans.
=

∫

A

[
∫

R

I(−∞,b)(tk)dGk(tk|t1, t2, . . . , tk))
]

dR̄(t1, t2, . . . tk−1)

=

∫

A

Gk(b|t1, t2, . . . , tk−1)dR̄(t1, t2, . . . , tk−1) = R[C]

by the definition of conditional probability. ✷

3.2. USS estimate

Denote mn = ⌊ k
√
n⌋. The approximation of Eg(X) by the multidimensional unit

stratified sampling consists in the following steps:

1. We partition the k-dimensional unit cube to mk
n identical cubes.

2. We choose one observation from the uniform distribution on each of the cubes.

3. We transform our observations using the superposition of the mapping tX with
g.

4. We average the results.

Mathematically speaking, our estimator equals to

Cn(g) :=
1

mk
n

mn
∑

i1=1

mn
∑

i2=1

· · ·
mn
∑

ik=1

g(tX(U i1,i2,...,ik))

whereU i1,i2,...,ik is a random vector having uniform distribution on the cube [ i1−1
mn

, i1
mn

]×
[ i2−1
mn

, i2
mn

] × · · · × [ ik−1
mn

, ik
mn

] for each i1 = 1, 2, . . . , mn, i2 = 1, 2, . . . , mn, . . . , ik =
1, 2, . . . , mn, such that all the vectors U i1,i2,...,ik are mutually independent.
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Denote
γn(g) := Cn(g)− Eg(X) (7)

the error of the approximation. Let U be random vector with k-dimensional uniform
distribution defined on the unit cube. Then we can write

γn(g)
Proposition 6

= Cn(g)− E(g(tX(U))) = Cn(g)−
∫

[0,1]×···×[0,1]

g(tX(u))du

=
1

mk
n

mn
∑

i1=1

mn
∑

i2=1

· · ·
mn
∑

ik=1
[

g(tX(U i1,i2,...,ik))−
∫

[
i1−1
mn

,
i1
mn

]×···×[
ik−1

mn
,
ik
mn

]

g(tX(u))m
k
ndu

]

=
1

mk
n

mn
∑

i1=1

mn
∑

i2=1

· · ·
mn
∑

ik=1

[g(tX(U i1,i2,...,ik))− Eg(tX(U i1,i2,...,ik))] (8)

immediately giving
Eγn(g) = 0

Now, let us examine the convergence rate of γn(g).

Theorem 8 (convergence rate). Let g be l1-K-Lipschitz. Denote F1(•) the marginal
c.d.f. of the X1 and Fλ(•|x1, . . . , xλ−1) the conditional c.d.f. of Xλ given (X1 =
x1, . . . , ,X

λ−1 = xλ−1) for each 1 < λ ≤ k. Let

∂

∂u
F−1
λ (u|x1, x2, . . . , xλ−1)

exist for each u ∈ (0, 1), for each x1, x2, . . . , xλ−1 ∈ R and each 1 ≤ λ ≤ k and let
there exist constants C > 0 and 0 ≤ a ≤ 1 such that

∂

∂u
F−1
λ (u|x1, x2, . . . , xλ−1) ≤ Cu−a (9)

for each 0 < u ≤ 1/2, x1, x2, . . . , xλ−1 ∈ R, 1 ≤ λ ≤ k, and

∂

∂u
F−1
λ (u|x1, x2, . . . , xλ−1) ≤ C(1− u)−a (10)

for each 1/2 ≤ u < 1, x1, x2, . . . , xλ−1 ∈ R, 1 ≤ λ ≤ k. Then

γn(g) = OP (n
−( 1

2
+ 1−a

k )).

(i.e. for each ǫ > 0 there exists a constant Mǫ such that lim supn→∞ P [|γn(g)| ≥
n−( 1

2
+ 1−a

k
)Mǫ] ≤ ǫ).

Remark 9. The following distributions fulfil the assumptions of Theorem 8:
(i) Uniform distribution with a = 0
(ii) Any distribution with a compact support and a density f such that there exists
c > 0 fulfilling f(x) ≥ c for each x from the support, with a = 0
(iii) Exponential and normal distributions with a = 1 but not with any a < 1.
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Proof (Remark). (i) and (ii) are straightforward, for (iii), see [10] Sec. 1.2.3. ✷

In order to prove the Theorem, let us state the upper bound of the variance of the
approximation error first:

Proposition 10 (bounds of variance). Let n ≥ 2k. Then, under the assumptions
of Theorem 8,

var(γn(g)) ≤







(

1
3
(mn−2)k

mk
n

+ 1
(2−a)(1−a)

mk
n−(mn−2)k

mk
n

)

m2a−2−k
n K2k2C2 if a < 1

(

2− 5(mn−2)k

3mk
n

)

m−k
n K2k2C2 if a = 1.

(11)

Proof (Proposition 10). (i) Introduction. Re-index random vectors U 1,1,...,1, U 1,1,...,2,
. . . ,Umn,mn,...,mn

as U 1, U 2, . . . , Umk
n
and denote Hi the support of L(U i) for each

i = 1, 2, . . . , mk
n. By (8),

γn(g) = m−k
n

mk
n

∑

i=1

Zi (12)

where Zi = g(tX(U i))− Eg(tX(U i)).

(ii) Ad. 0 ≤ a < 1. We start with the second moments of tλ
X
(U i). Fix i and λ

and assume that the projection of Hi into the dimension λ is [q/mn, (q+1)/mn] for
some integer q fulfilling 0 ≤ q < mn/2.

Denote Hλ−1
i the projection of Hi into the first λ− 1 dimensions. Using the fact

that minc E(X − c)2 happens for c = EX for each random variable X we get that

var(tλ
X
(U i))

=

∫

Hλ−1
i

∫ (q+1)/mn

q/mn

[F−1
λ (uλ|t1X(u1), . . . , tλ−1

X
(u1, . . . , uλ−1))− E(tλ

X
(U i))]

2

mλ
nduλduλ−1 . . . du1

≤
∫

Hλ−1
i

J(t1
X
(u1), . . . , t

λ−1
X

(u1, . . . , uλ−1))m
λ−1
n duλ−1 . . . du1 (13)

where

J(t1, . . . , tλ−1) =

∫ (q+1)/mn

q/mn

[F−1
λ (u|t1, . . . , tλ−1)−F−1

λ ((q + 1)/mn|t1, . . . , tλ−1)]
2mndu.

(14)
For brevity, we shall write J instead of J(t1

X
(u1), . . . , t

λ−1
X

(u1, . . . , uλ−1)) and F
−1
λ (•)

instead of F−1
λ (•|t1

X
(u1), . . . , t

λ−1
X

(u1, . . . , uλ−1)) in the following text.
If q = 0 then we may use inequality

F−1
λ (v)− F−1

λ (u) =

∫ v

u

(F−1
λ )′(x)dx ≤

∫ v

u

Cx−adx =
C

1− a
(v1−a − u1−a) (15)
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to estimate

J =

∫ 1/mn

0

[F−1
λ (1/mn)− F−1

λ (u)]2mndu

≤
(

C

1− a

)2 ∫ 1/mn

0

[(1/mn)
1−a − u1−a]2mndu

=

(

C

1− a

)2 ∫ 1/mn

0

[(1/mn)
2−2a − 2(1/mn)

1−au1−a + u2−2a]mndu

=

(

C

1− a

)2

mn

[

u(1/mn)
2−2a − 2(1/mn)

1−a u
2−a

2− a
+

u3−2a

3− 2a

]1/mn

0

=

(

C

1− a

)2

mn

[

1− 2

2− a
+

1

3− 2a

]

(1/mn)
3−2a

=

(

C

1− a

)2 [

1− 2

2− a
+

1

3− 2a

]

m2a−2
n

=

(

C

1− a

)2 [ −a
2− a

+
1

3− 2a

]

m2a−2
n

≤
(

C

1− a

)2 [ −a
2− a

+
1

2− a

]

m2a−2
n

=

(

C

1− a

)2(
1− a

2− a

)

m2a−2
n = C2 1

(2− a)(1− a)
m2a−2

n (16)

(we have used fact that 3− 2a ≥ 2− a for a ≤ 1 at the last “≤”) which implies that

var(tλx(U i))
(13),(16)

≤ C2 1

(2− a)(1− a)
m2a−2

n

∫

Hλ−1
i

mλ−1
n duλ−1 . . . du1

=
C2

(2− a)(1− a)
m2a−2

n (17)

for q = 0.
Let 1 ≤ q ≤ mn/2 − 1. Using the Mean Value Theorem we get that, for each

0 < u < v < 1
2
,

F−1
λ (v)− F−1

λ (u) = (F−1
λ )′(b)(v − u) (18)

for some u ≤ b ≤ v. Therefore and due to the assumptions of the present Proposi-
tion, it holds that

F−1
λ (v)− F−1

λ (u) ≤ Cb−a(v − u) ≤ Cu−a(v − u). (19)

Using it we get
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J =

∫ (q+1)/mn

q/mn

[F−1
λ ((q + 1)/mn)− F−1

λ (u)]2mndu

≤
∫ (q+1)/mn

q/mn

[

Cu−a

(

q + 1

mn

− u

)]2

mndu

≤
∫ (q+1)/mn

q/mn

[

C

(

q

mn

)−a(
q + 1

mn
− u

)

]2

mndu

= C2

(

q

mn

)−2a ∫ 1/mn

0

v2mndv

= C2

(

q

mn

)−2a

mn
m−3

n

3

≤ C2

(

1

mn

)−2a

mn
m−3

n

3
=
C2

3
m2a−2

n

so that

var(tλ
X
(U i))

(13)

≤ C2

3
m2a−2

n (20)

for 1 ≤ q ≤ mn/2.
Finally, if mn is odd and q = mn/2− 1/2 then, similarly to (13),

var(tλ
X
(U i)) ≤

∫

Hλ−1
i

∫ 1/2+1/(2mn)

1/2−1/(2mn)

[F−1
λ (uλ)− F−1

λ (1/2)]2mnduλduλ−1 . . . du1.

Analogically to (20), we get that

∫ 1/2

1/2−1/(2mn)

[F−1
λ (u)− F−1

λ (1/2)]2mndu ≤ 1

2

C2

3
m2a−2

n

and, using the symmetry, that

∫ 1/2+1/(2mn)

1/2

[F−1
λ (u)− F−1

λ (1/2)]2mndu ≤ 1

2

C2

3
m2a−2

n .

so that (20) holds also for mn odd and q = mn/2− 1/2.
It can be easily proved using the symmetry that (20) holds formn/2 ≤ q ≤ mn−2

and that (17) holds for q = mn − 1. Therefore and due to the previous calculations

var(tλ
X
(U i)) ≤

{ 1
(2−a)(1−a)

C2m2a−2
n if q = 0 or q = mn − 1

1
3
C2m2a−2

n otherwise.
(21)

It is clear that if q = 0 or q = mn − 1 then the cube Hi touches the boundary
of the unit cube. Hence, if Hi does not touch the boundary of the unit cube then
0 < q < mn − 1 so that we get that

var(tλ
X
(U i)) ≤

1

3
C2m2a−2

n
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if Hi does not touch the boundary of the unit cube, and

var(tλ
X
(U i)) ≤ max

(

1

(2− a)(1− a)
,
1

3

)

C2m2a−2
n =

1

(2− a)(1− a)
C2m2a−2

n

if Hi touches the boundary of the unit cube. Now we can use Lemma 4 to obtain

var(Zi) ≤ K2
k

∑

i1=1

k
∑

i2=1

√

var(ti1P (U i))var(t
i2
P (U i))

≤
{

K2k2 1
(2−a)(1−a)

C2m2a−2
n if Hi touches the boundary of the unit cube

K2k2 1
3
C2m2a−2

n otherwise.
(22)

Since exactly (mn−2)k cubes Hi do not touch the boundary of the unit cube in any
dimension, we may estimate

mk
n

∑

i=1

varZi ≤ (mn − 2)kK2k2
1

3
C2m2a−2

n + [mk
n − (mn − 2)k]K2k2

1

(2− a)(1− a)
C2m2a−2

n

=

(

1

3
(mn − 2)k +

1

(2− a)(1− a)
[mk

n − (mn − 2)k]

)

m2a−2
n K2k2C2 (23)

so that

var(γn(g)) = var



m−k
n

mk
n

∑

i=1

Zi



 = m−2k
n

mk
n

∑

i=1

var(Zi)

(23)

≤
(

1

3
(mn − 2)k +

1

(2− a)(1− a)
[mk

n − (mn − 2)k]

)

m2a−2−2k
n K2k2C2

which proves (11) for a < 1.

(iii) Ad. a = 1. We shall proceed analogously to (ii): Let 1 ≤ q ≤ mn/2 − 1. It
follows from the Mean Value Theorem and from (9) that for each 0 < u < v ≤ 1/2
there exist u ≤ b ≤ v such that

F−1
λ (v)− F−1

λ (u) = (F−1
λ )′(b)(v − u) ≤ Cb−1(v − u) ≤ Cu−1(v − u). (24)

Therefore

J =

∫ (q+1)/mn

q/mn

[F−1
λ ((q + 1)/mn)− F−1

λ (u)]2mndu

(24)

≤
∫ (q+1)/mn

q/mn

[

Cu−1

(

u− q

mn

)]2

mndu

≤
∫ (q+1)/mn

q/mn

[

C

(

1

mn

)−1(

u− q

mn

)

]2

mndu

= C2

(

1

mn

)−2 ∫ m−1
n

0

v2mndv = C2m2
nmn

[

v3/3
]m−1

n

0
= C2/3
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(J is defined by (14)).
Let q = 0. Since it holds that

F−1
λ (v)− F−1

λ (u) =

∫ v

u

(F−1
λ )′(x)dx ≤

∫ v

u

Cx−1dx = C(ln v − ln u) (25)

we have

J =

∫ 1/mn

0

[F−1(1/mn)− F−1
λ (u)]2mndu

≤ C2

∫ 1/mn

0

[ln(1/mn)− ln u]2mndu

u= exp v
mn= C2

∫ 0

−∞
[ln(1/mn)− (v + ln(1/mn))]

2mn
exp v

mn

dv

= C2

∫ 0

−∞
v2 exp v dv

= C2

(

[

v2 exp v
]0

−∞ − [2v exp v]0−∞ + 2

∫ 0

−∞
exp v dv

)

= 2C2.

Hence, after handling the middle interval in case of odd mn and using the symmetry
the same way as in (ii),

var(tλ
X
(U i)

(13)

≤
{

2C2 if q = 0 or q = mn − 1
1
3
C2 otherwise.

and, consequently,

var(Zi) ≤
{

K2k22C2 if the cube Hi touches the boundary of the unit cube
K2k2 1

3
C2 otherwise

(26)
so that

var (γn(g)) = var



m−k
n

mk
n

∑

i=1

Zi



 = m−2k
n

mk
n

∑

i=1

var(Zi)

(26)

≤ m−2k
n

(

1

3
(mn − 2)k + 2[mk

n − (mn − 2)k])

)

K2k2C2

= m−2k
n

(

2mk
n −

5

3
(mn − 2)k

)

K2k2C2

= m−k
n

(

2− 5(mn − 2)k

3mk
n

)

K2k2C2.

which proves (11) for a = 1. ✷

Proof (Theorem 8). If a = 1 then 2−2a+k
2k

= 1
2
and we get using the Chebyshev

inequality

P (|n1/2γn(g)| ≥ ǫ) ≤ var(n1/2γn(g))

ǫ2

(11)

≤ nm−k
n

ǫ2

(

2− 5(mn − 2)k

3mk
n

)

A

≤ (mn + 1)k

ǫ2mk
n

2A
n→∞−→ ǫ−22A
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for some constant A ∈ R.
If a < 1 then there exists constant B > 0 such that

var
(

n
2−2a+k

2k γn(g)
)

= n
2−2a+k

k var (γn(g))

(11)

≤

(

1
3
(mn−2)k

mk
n

+ 1
(2−a)(1−a)

mk
n−(mn−2)k

mk
n

)

m2a−2−k
n B

(mn + 1)2a−2−k

n→∞−→ B/3

hence, we may use the Chebyshev inequality to get the assertion of the Theorem. ✷

4. USS approximation of stochastic programming problems

Consider a stochastic programming problem, i.e., to find (one of the solutions) ξ̂ ∈ X
of a problem

min
ξ∈X

Eg(ξ,X) (27)

where X is a k-dimensional random vector, and that the problem (27) is approxi-
mated by

min
ξ∈X

Cn(g(ξ, •)) (28)

(recall that Cn(g(ξ, •) is the USS approximation of Eg(ξ,X)).
Assume that

(a) X is a compact subset of Rr

(b) for each ξ ∈ X , g(ξ, •) is l1-Lipschitz with a constant K, not depending on ξ

(c) for each x ∈ R
k, g(•,x) is l2-Lipschitz with a constant L, not depending on x

(d) for each ξ ∈ X and x ∈ R
k, |g(ξ,x) − Eg(ξ,X)| < H for some H > 0 not

depending on x and ξ.

Remark 11. The assumption (d) if fulfilled if the support of X is compact of if the
function g is bounded.

As we do not suppose the random variables U•, used to compute the approximation,
to be able anticipate the realization of the ”chance” in reality, we naturally assume
U• to be independent of X.

4.1. Expected loss

We evaluate the error of the approximation by the expected loss

η(ξ̇) := W (ξ̇)−W (ξ̂), W (ξ) = Eg(ξ,X) (29)

where ξ̂ is a solution of (27) and ξ̇ is a (chosen) solution of (28) (both the solutions
are assumed to exist). The expected loss is a very natural measure of the inaccu-
racy of the approximation because it evaluates the loss caused by the usage of the
”approximate” solution instead of the ”true” one (see [11] for a more extensive dis-
cussion on the expected loss). Note that, thanks to the optimality of ξ̂, the expected
loss is always non-negative. The following result is well known (see e.g. [4]):
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Lemma 12. For each optimal solution ξ̇ of (28) and each optimal solution ξ̂ of (27),

η(ξ̇) ≤ 2 sup
ξ∈X

|Cn(g(ξ, •))− E(g(ξ, •))|

(note that the relation is valid for any realization of the random variables).

Proof. see [4].

4.2. Convergence rate of the USS approximation

Theorem 13. Let X fulfil the assumptions given in Theorem 8 and let a ≥ 1−k/2.
Then

η(ξ̇n) = oP

(

n−( 1
2
+ 1−a

k )+δ
)

for any δ > 0 where, for each n ∈ N, ξ̇n is an arbitrary solution of (28) (we write
Xn = oP (n

a) if there exists M > 0 such that limn→∞ P [|Xn| ≥ naM ] = 0).

Before we prove the Theorem, let us cite suitable version of a ”large deviation
inequality” which we then use in a subsequent Lemma.

Proposition 14 ([9], “Bennet’s Inequality 3.”, pp. 951-2,2 and Proposition 1., p.
441). Let X1, X2, . . . , Xn be independent random variables with Xi ≤ b, EXi = 0 and
varXi = σ2

i , for i = 1, 2, . . . , n. Let σ2 = (σ2
1+· · ·+σ2

n)/n and X̄ = (X1+· · ·+Xn)/n.
Then for all x ≥ 0

P
[√
nX̄ ≥ x

]

≤ exp

{

− x2

2σ2
ψ

(

xb

σ2
√
n

)}

where
ψ(y) = (2/y2)[(1 + y) log(1 + y)− y].

The function ψ has the following properties:

(a) ψ(y) in non-increasing for y ≥ −1,

(b) yψ(y) is non-decreasing for y ≥ −1,

(c) ψ(y) ≥ 1
1+y/3

for y ≥ −1.

Lemma 15. Let the c.d.f.’s of X fulfil the assumptions of the Theorem 8. Denote

γn(ξ) := Cn(g(ξ, •))− Eg(ξ,X).

If a ≥ 1 − k/2 then, for each η > 0, there exists a constant Cη > 0, independent of
ξ and n, such that

P

[

n
1
2
+ 1−a

k
−δ|γn(ξ)| ≥ η

]

≤ 2 exp
{

−Cηn
δ
}

for each n > 1, ξ ∈ X and δ > 0.

2There is a misprint in the original text. The correct version follows from the proof.
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Proof (Lemma 15). Denote κ := 1−a
k

and N = ⌊ k
√
n⌋k. Recall that

γn(ξ) =
1

N

N
∑

i=1

Zn,i, Zn,i = g(ξ, tX(Un,i))− Eg(ξ, tX(Un,i))

where Un,1,Un,2, . . . ,Un,N are some independent uniform random variables and
where

EZn,i = 0, varZn,i ≤ KBN−2κ. (30)

for some constant B independent of i and ξ (see (12), (26) and (22), recall that K
is the Lipschitz constant introduced by the assumption (b) of the present Section).
By putting X̄ = γn(ξ), λ = ηn−κ+δ and b = H into Proposition 14 we get

P
(

nκ+1/2−δγn(ξ) ≥ η
)

≤ exp

{

−n
−2κ+2δη2

2σ2
ψ

(

n−κ+δηH

σ2
√
n

)}

where σ2 = 1
N

∑N
i=1 varZn,i and ψ is defined at Proposition 14. Since

σ2
(30)

≤ N−2κV ≤ (n1/k − 1)−2kκV,

where V = KB, and since xψ(x) is non-decreasing function according to (b) of
Proposition 14, we have

P
(

nκ+1/2−δγn(ξ) ≥ η
)

≤ exp

{

− n−2κ+2δη2

2[n1/k − 1]−2kκV
ψ

(

n−κ+δηH

(n− 1)−2κV
√
n

)}

(a) of Pr. 14

≤ exp

{

− n−2κ+2δη2

2[n1/k − 1]−2kκV
ψ

(

n−κ+δηH

n−2κV
√
n

)}

= exp

{

−
(

n1/k − 1

n1/k

)2kκ

n2δ η
2

2V
ψ

(

nκ+δ−1/2 ηH

V

)

}

(c) of Th. 14

≤ exp

{

−
(

1− 1

n1/k

)2kκ

n2δ η2

2V
[

1 + nκ+δ−1/2 ηH
3V

]

}

= exp

{

−
(

1− 1

n1/k

)2kκ

nδ η2

2V
[

n−δ + nκ−1/2 ηH
3V

]

}

≤ exp

{

−
(

1− 1

n1/k

)2kκ

nδ η2

2V
[

1 + ηH
3V

]

}

because κ− 1/2 ≤ 0 according to the assumption of the present Lemma. Hence

P
(

nκ+1/2−δ|γn(ξ)| ≥ η
)

≤ 2 exp

{

−
(

1− 1

n1/k

)2kκ

nδ η2

2
[

V + ηH
3

]

}

≤ 2 exp
{

−nδCη

}

where Cη =
(

1− 1
k
√
2

)2kκ
η2

2[V+ ηH
3 ]

. ✷
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Proof (Theorem 13). Let η > 0. We shall proceed similarly to [3]. Denote A =
2−2a+k

2k
. Since g(•,x) is Lipschitz with the constant L, the function γn(•) is Lipschitz

with the constant 2L so that

θn(•) := nA−δγn(•)

is Lipschitz with the constant 2nA−δL.
Using a procedure, identical to the proof of Theorem 2 from [2],3 we may show

that for each n ∈ N there exists ξ1, ξ2, . . . , ξN(η,n) with N(η, n) ≤ (Dη2Ln
A−δ + 1)k

for some constant Dη, independent of n, such that

P

[

max
ξ∈X

|θn(ξ)| ≥ η

]

≤ P

[

max
i=1,2,...,N(η,n)

|θn(ξi)| ≥
η

3

]

.

Further, we may estimate

P

[

max
i=1,2,...,N(η,n)

|θn(ξi)| ≥
η

3

]

≤
N(η,n)
∑

i=1

P

[

|θn(xi)| ≥
η

3

]

Lemma 15

≤
N(η,n)
∑

i=1

2 exp
{

−nδC η
3

}

= N(η, n)2 exp
{

−nδC η
3

}

≤ (Dη2Ln
A−δ + 1)k2 exp

{

−nδC η
3

}

n→∞−→ 0.

Since

0 ≤ nA−δη(ξ̇n)
Lemma 12

≤ nA−δ2max
ξ∈X

|γn(ξ)| = 2max
ξ∈X

|θn(ξ)|

we have that
P

[

nA−δη(ξ̇n) ≥ η
]

n→∞−→ 0.

✷

5. Conclusion

We have applied one of the variance-reduction techniques to the approximate com-
putation of stochastic programming problems. As the convergence rate of a Monte
Carlo estimate is O(n−1/2), our method is able, given some conditions, to speed up
the rate of convergence of the approximation error significantly. Even if we have dis-
cussed only one-stage problems here, the method may be applied to the multi-stage
case, too; we have omitted these results here for space reasons, interested readers
may, however, refer [10], Sec. 3.2.3.
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[2] V. Kaňková. An approximative solution of a stochastic optimization problem.
In Trans. Eighth Prague Conference, pages 234–244. Academia, Prague, 1978.
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